

## Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondary school.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups. This presents a challenge in ensuring the more confident mathematicians are being extended. An extension tasks to deepen understanding is the most simplistic way around this.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's (1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

YEAR 1 Addition

| Objective / Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Combining two parts to make a whole: part- whole model | Use part, part whole model. <br> Use cubes to add two numbers together as a group or in a bar. | Use pictures to add two numbers together as a group or in a bar. | $\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ <br> Use the part part whole diagram as shown above to move into the abstract. <br> Include missing number questions to support varied fluency: $\begin{gathered} 8=?+3 \\ 5+?=8 \end{gathered}$ |
| Starting at the bigger number and counting on | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. | $5+12=17$ <br> Place the larger number in your head and count on the smaller number to find your answer. |
| Regrouping to make 10. <br> This is an essential skill for column addition later. | $6+5=11$ <br> Start with the bigger number and use the smaller number to make 10. <br> Use ten frames. | $3+9=$ <br> Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10. $9+5=14$ | $7+4=11$ <br> If I am at seven, how many more do I need to make 10 ? How many more do I add on now? |



YEAR 2 Addition

| Objective／Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Adding multiples of ten | Model using dienes and bead strings | Use representations for base ten． | $\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$ |
| Use known number facts <br> Part，part whole | Children explore ways of making numbers within 20 | $\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$ | Explore commutativity of addition by swapping the addends to build a fact family． <br> Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations． $\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$ |
| Using known facts |  | $\begin{aligned} \because+\therefore & =\therefore \\ \\|+\\| \\| & =\\| \\|\\| \\| \\ \square \square+\text { 椙 } & =\text { 昭吅 } \end{aligned}$ <br> Children draw representations of $\mathrm{H}, \mathrm{T}$ and O | $3+4=7$ <br> leads to $30+40=70$ <br> leads to $300+400=700$ |


| Bar model | $3+4=7$ | $7+3=10$ | 23 25 <br> $?$ $23+25=48$ |
| :---: | :---: | :---: | :---: |
| Add a two digit number and ones | $17+5=22$ <br> Use ten frame to make ＇magic ten <br> Children explore the pattern． $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$ | $17+5=22$ <br> Use part part whole and number line to model． | $17+5=22$ <br> Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned} \quad$ <br> Lead into recording in column format，to reinforce place value and prepare children for formal written methods with larger values． |
| Add a 2 digit number and tens | $25+10=35$ <br> Explore that the ones digit does not change |  | $\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$ |
| Add two 2－digit numbers | ARABAR <br> Model using dienes，place value counters and numicon |  <br> Use number line and bridge ten using part whole if necessary． |  $\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ |


|  |  |  | Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values. |
| :---: | :---: | :---: | :---: |
| Add three 1-digit numbers | Combine to make 10 first if possible, or bridge 10 then add third digit | Regroup and draw representation. $+\cos ^{8}+\cos ^{2}+x^{2}=15$ | $\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$ <br> Combine the two numbers that make/ bridge ten then add on the third. |

YEAR 3 Addition

| Objective /Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Column Addition-no regrouping (friendly numbers) <br> Add two or three 2 or 3digit numbers. |  <br> Dienes or numicon <br> Add together the ones first, then the tens. <br> Move to using place value counters | Children move to drawing the counters using a tens and one frame. | $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ <br> Add the ones first, then the tens, then the hundreds. |
| Column Addition with regrouping. | Exchange ten ones for a ten. Model using numicon and place value counters. | Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line | $20+5$ <br> $40+13$$=73$$60+8$ <br> Start by partitioning <br> the numbers before <br> formal column to show <br> the exchange. <br> $\frac{+85}{621}$ |


|  | (10) (1) <br> (10) (10)(10) (1) (1) <br> (10) (10) (1) <br>  (1)$46+27=73$ |  |  |
| :---: | :---: | :---: | :---: |
| Estimate the answers to questions and use inverse operations to check answers | Estimating $98+17=$ ? $100+20=120$ | Use number lines to illustrate estimation. | Building up known facts and using them to illustrate the inverse and to check answers: $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$ |

# YEARS $4-6$ Addition 

| Objective /Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Years 4-6 <br> Estimate and use inverse operations to check answers to a calculation |  | AS per Year 3 |  |
| Y4-add numbers with up to 4 digits | Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. | $\bullet$ $\ddots$ $\bullet \bullet$ $\bullet$  <br>  $\bullet$ $\bullet$ $\bullet$  <br> $\bullet \bullet$ $\bullet \bullet$ $\bullet$ $\bullet \bullet$  <br>  $\bullet \bullet$  $\bullet$  <br> 7 1 5 1  <br> $\bullet$ $\bullet$    <br> Draw representations using place value grid. | Continue from previous work to carry hundreds as well as tens. <br> Relate to money and measures. |
| Y5-add numbers with more than 4 digits. <br> Add decimals with 2 decimal places, including money. |  | $2.37+81.79$tens ones tenter hundredtes <br>  00 000 00000 <br> 00000 0 0000 $0 \&$ <br> 000 00060   <br>   00 0000 <br> 6 | $\begin{array}{r} 72.8 \\ \\ +54.6 \\ \hline 127.4 \\ \hline 1.1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \hline \end{array}$ |
| Y6—add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points. | As Y5 | As Y5 | Insert zeros for place holders. $\begin{array}{r} 23 \cdot 361 \\ 91,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ 120,579 \end{array}+\frac{1 \cdot 300}{93 \cdot 511} \begin{array}{r} 21 \cdot 21 \end{array}$ |

YEAR 1 SUBTRACTION
Objective /Strategy

| Objective/Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Represent and use number bonds and related subtraction facts within 20 <br> Include subtracting zero <br> Part Part Whole model | Link to addition. Use PPW model to model the inverse. <br> If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$ | Use pictorial representations to show the part. | Move to using numbers within the part whole model. <br> Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$ |
| Make 10 | Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 . | Jump back 3 first, then another 4. Use ten as the stopping point. | $16-8$ <br> How many do we take off first to get to 10 ? How many left to take off? |


| Including the |
| :--- | :--- | :--- | :--- |
| inverse operations. |


| YEAR 2 - SUBTRACTION |  |  |  |
| :---: | :---: | :---: | :---: |
| Objective \& Strategy | Concrete | Pictorial | Abstract |
| Regroup a ten into ten ones | Use a PV chart to show how to change a ten into ten ones, use the term 'take and make' | $\begin{aligned} & \sum_{2}^{3} \sum_{3}^{3} \\ & 20-4= \end{aligned}$ | $20-4=16$ |
| Partitioning to subtract without regrouping. <br> 'Friendly numbers' | $34-13=$ <br> 21 <br> Use Dienes to show how to partition the number when subtracting without regrouping. | Children draw representations of Dienes and cross off. <br> $\square$ $43-21=22$ | $43-21=22$ |
| Make ten strategy <br> Progression should be crossing one ten, crossing more than one ten, crossing the hundreds. | $34-28$ <br> Use a bead bar or bead strings to model counting to next ten and the rest. | Use a number line to count on to next ten and then the rest. | $93-76=17$ |

YEAR 3 －SUBTRACTION

| Objective／Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtract numbers <br> mentally including： <br> three digit number + <br> ones <br> three digit number＋ <br> tens <br> three digit umber＋ <br> hundreds |  |  | Vary the position of the answer and question． Expose children to missing number questions and vary the missing part of the calculation． $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$ |
| without regrouping （friendly numbers） | Use base 10 or Numicon to mode |  |  |
| Column subtraction with regrouping | Begin with base 10 or Numicon．Move to pv counters，modelling the exchange of a ten into ten ones．Use the phrase＇take and make＇for exchange． | 45 $\frac{-29}{16}$ <br>  $\text { ] 品品 }=16$ $10+6=16$ <br> Children may draw base ten or PV counter and cross off． |  |

YEARS 4-6 SUBTRACTION

| Objective /Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtracting tens and ones <br> Year 4 subtract with up to 4 digits. <br> Introduce decimal subtraction through context of money | 234-179 <br> Model process of exchange using Numicon, base ten and then move to PV counters. | Children to draw pv counters and show their exchange-see Y3 | Use the phrase 'take and make' for exchange |
| Year 5-Subtract with at least 4 digits, including money and measures. <br> Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places | As Year 4 | Children to draw pv counters and show their exchange-see Y3 |  |
| Year 6-Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place). | As Year 4 | Children to draw pv counters and show their exchange-see Y3 |  |

## YEAR 1 MULTIPLICATION

Programme of Study specifies the following objectives, however it does not require the explicit teaching of the mathematical symbol of multiplication

| Objective / Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Use practical activities using manipultives including cubes and Numicon to demonstrate doubling | Draw pictures to show how to double numbers <br> Double 4 is 8 | Partition a number and then double each part before recombining it back together. |
| Counting in multiples (2s, 5s, 10s) | Count the groups as children are skip counting, children may use their fingers as they are skip counting. | Children make representations to show counting in multiples. <br>  | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. <br> $2,4,6,8,10$ <br> $5,10,15,20,25,30$ |


| Making equal groups and counting the total | Use manipulatives to create equal groups. | to show $2 \times 3=6$ <br> Draw and make representations | $2 \times 4=8$ |
| :---: | :---: | :---: | :---: |
| Repeated addition | Use different objects to add equal groups | Use pictorial including number lines to solve prob There are 3 sweets in one bag. <br> How many sweets are in 5 bags altogether? | Write addition sentences to describe objects and pictures. |
| Understanding arrays | Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc. | Draw representations of arrays to show | $\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$ |

YEAR 2 MULTIPLICATION
Children should be able to recall and use multiplication and division facts for the 2，5 and 10 times times tables．

| Objective／Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Model doubling using dienes and PV counters． $40+12=52$ | Draw pictures and representations to show how to double numbers | Partition a number and then double each part before recombining it back together． |
| Counting in multiples of $2,3,4$ ， 5， 10 from 0 （repeated addition） | Count the groups as children are skip counting，children may use their fingers as they are skip counting．Use bar models． $5+5+5+5+5+5+5+5=40$ | Number lines，counting sticks and bar models should be used to show representation of counting in multiples． | Count in multiples of a number aloud． <br> Write sequences with multiples of numbers． $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ $\square$ |


| Objective / Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Multiplication is commutative | Create arrays using counters and cubes and <br> Numicon. <br> Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. | Use representations of arrays to show different calculations and explore commutativity. <br> $\bigcirc \bigcirc \bigcirc$ <br> $\bigcirc \bigcirc \bigcirc$ <br> $\bigcirc \bigcirc \bigcirc$ | $12=3 \times 4 \quad 12=4 \times$ <br> 3 <br> Use an array to write multiplication sentences and reinforce repeated addition. $\left\lvert\, \begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}\right.$ |
| Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other. |  |  | $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ <br> Show all 8 related fact family sentences. |

## YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Solve problems, } \\
\text { including missing } \\
\text { number problems, } \\
\text { integer scaling } \\
\text { problems, }\end{array}
$$ \& \& Three times as high, eight times as long <br>
\& \& \& ? \times 5=20 <br>

20 \div ?=5\end{array}\right\}\)| 3 hats and 4 coats, how many different |
| :--- |
| outfits? |

| YEARS 4-6 Multiplication |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Objective /Strategy | Concrete |  | Abstract |  |
| Grid method recap from year 3 for 2 digits $\times 1$ digit <br> Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation) | Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows <br> Fill each row with 126 <br> Add up each colt les making any exchanges needed | Children can represent their work with place value counters in a way that they understand. <br> They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. | $\times$ 30 5 <br> 7 210 35$210+35=245$ |  |
| Column multiplication | Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ <br> It is important at this stage that they always multiply the ones first. <br> The corresponding long multiplication is modelled alongside | $x$ 300 20 7 <br> 4 1200 80 28 <br> The grid method my be used to show how this relates to a formal written method. <br> Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. |  | is may lead a compact thod. |


| Objective /Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Column Multiplication for 3 and 4 digits $\times 1$ digit. |  <br> It is important at this stage that they always Multiply the ones first. <br> Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ | $x$ 300 20 7 <br> 4 1200 80 28 |  |
| Column multiplication | Manipulatives may still be used with the corresponding long multiplication modelled alongside. | Continue to use bar modelling to support problem solving |  1 8  <br> $\times$ 1 3  <br>  5 4  <br> 1 2 0  <br> 2 3 4  <br> $18 \times 3$ on the first row ( $8 \times 3=24$, carrying the 2 for 20 , then 1 x3) <br> $18 \times 10$ on the 2nd row. Show multiplyi ng by 10 by putting zero in $(1234 \times 10)$ units first |



| YEAR 1 |  |  |  |
| :--- | :---: | :---: | :---: |
| Objective /Strategy | Concrete | Pictorial | Abstract |


| Objective/ Strategy | Concrete | Abstract |
| :--- | :---: | :---: | :---: | :---: |
| Division as sharing |  |  |
| Use Gordon ITPs for |  |  |
| modelling |  |  |


| Objective/Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Division as sharing | I have 10 cubes, can you share them equally in 2 groups? | Children use pictures or shapes to share quantities. <br> Children use bar modelling to show and support understanding. $12 \div 4=3$ | $12 \div 3=4$ |
| Division as grouping | Divide quantities into equal groups. <br> Use cubes, counters, objects or place value counters to aid understanding. | Use number lines for grouping $12 \div 3=4$ <br> Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ | $28 \div 7=4$ <br> Divide 28 into 7 groups. How many are in each group? |


| YEAR 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| Objective/Strategy | Concrete | Pictorial | Abstract |
| Division as grouping | Use cubes, counters, objects or place value counters to aid understanding. <br> 24 divided into groups of $6=4$ $96 \div 3=32$ | Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ | How many groups of 6 in 24? $24 \div 6=4$ |
| Division with arrays | Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ | Draw an array and use lines to split the array into groups to make multiplication and division sentences | Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $\begin{aligned} & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$ |


| YEAR 3 (Greater Depth Y2) |  |  |  |
| :---: | :---: | :---: | :---: |
| Objective/Strategy | Concrete | Pictorial | Abstract |
| Division with remainders. | $14 \div 3=$ <br> Divide objects between groups and see how much is left over | Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. <br> Draw dots and group them to divide an amount and clearly show a remainder. <br> remainder 2 <br> Use bar models to show division with remainders. <br> remainder: <br> $5 s$ in 40? <br> mainder: <br> rs, when it becomes inefficient to count in single me orded using known facts. | Complete written divisions and show the remainder using $r$. |

Year 4-6


## Long Division

Step 1-a remainder in the ones

> | $h \mathrm{t} o$ |
| :---: |
| 041 R 1 |
| $1 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto
0400 R7
$8 \longdiv { 3 2 0 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

## Long Division

## Step 1 continued...

> hto
> 061
> $0 \begin{array}{r}247 \\ -4 \\ \hline\end{array}$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$


When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

## Long Division

Step 2－a remainder in the tens

| 1．Divide． | 2．Multiply \＆subtract． | 3．Drop down the next digit． |
| :---: | :---: | :---: |
| $\begin{array}{r} t o \\ 2 \\ \hline 2 \longdiv { 5 8 } \end{array}$ <br> Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！ | $\begin{gathered} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ <br> To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten． | $\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ <br> Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18. |


| 1．Divide． | 2．Multiply \＆subtract． | 3．Drop down the next digit． |
| :---: | :---: | :---: |
| $t$ 。 | $t$ 。 | $t$ 。 |
| 29 | 29 | 29 |
| $2 \longdiv { 5 8 }$ | $2 \longdiv { 5 8 }$ | $2 \longdiv { 5 8 }$ |
| $-\frac{4}{18}$ | $\frac{-4}{18}$ | $\frac{-4}{18}$ |
|  | －18 | $\begin{array}{r}18 \\ -18 \\ \hline\end{array}$ |
|  | 0 | 0 |
| Divide 2 into 18．Place 9 into the quotient． | Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract． | The division is over since there are no more digits in the dividend．The quotient is 29 ． |

## Long Division

| Step 2-a remainder in any of the place values | 1. Divide. | 2. Multiply \& subtract. | 3. Drop down the next digit. |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & { }^{h t o} \\ & \frac { 1 } { 2 } \longdiv { 2 7 8 } \end{aligned}$ <br> Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred. | $\begin{gathered} \quad h t 0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ <br> Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero. | $\begin{aligned} & h t o \\ & 18 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \end{aligned}$ <br> Next, drop down the 7 of the tens next to the zero. |
|  | Divide. | Multiply \& subtract. | Drop down the next digit. |
|  | $\begin{gathered} \begin{array}{c} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{array} . \begin{array}{l}  \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$ <br> Divide 2 into 7. Place 3 into the quotient. | $\begin{gathered} h 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ <br> Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten. | $\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ <br> Next, drop down the 8 of the ones next to the 1 leftover ten. |
|  | 1. Divide. | 2. Multiply \& subtract. | 3. Drop down the next digit. |
|  | $\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -6 \\ \hline 18 \end{gathered}$ <br> Divide 2 into 18 . Place 9 into the quotient. | $\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -6 \\ \frac{6}{18} \\ \frac{-18}{0} \end{gathered}$ <br> Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero. | $\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{gathered}$ <br> There are no more digits to drop down. The quotient is 139 . |

